Home
Education
Knowledge
Blog
TV
Do Good
ธรรมะ
กิจกรรม
โครงการทรูปลูกปัญญา

ความเร่ง (Acceleration)

Posted By Thananthorn | 26 พ.ย. 61
412 Views

  Favorite

ในการเรียนการสอนเรื่องการเคลื่อนที่ในวิถีต่าง ๆ เช่น การเคลื่อนที่แนวตรง การเคลื่อนที่วิถีโค้ง การเคลื่อนที่แบบวงกลม นักเรียนมักจะได้ยินคำคำหนึ่งเสมอ นั่นคือ ความเร่ง ซึ่งความเร่งนี้มีความสัมพันธ์กับการเคลื่อนที่ในแทบจะทุกรูปแบบ รวมถึงมีเรื่องแรงเข้ามาเกี่ยวข้องกับความเร่งนี้ด้วย

 

โดยทั่วไปการเคลื่อนที่ส่วนมากจะเป็นการเคลื่อนที่ที่ความเร็วไม่คงที่ เมื่อนำการเปลี่ยนแปลงความเร็วนั้นมาเทียบกับเวลา จึงได้ปริมาณการเปลี่ยนแปลงความเร็วเทียบกับเวลานั้น และนั่นคือ “ความเร่ง” หรือกล่าวได้ว่า ความเร่งก็คือ อัตราการเปลี่ยนแปลงความเร็วนั่นเอง โดยแทนด้วยสัญลักษณ์ a หน่วยของความเร่งมักใช้  m/s2 หรือเมตรต่อวินาที2 โดยการคำนวณอย่างง่ายเรามักจะประมาณให้ความเร่งมีค่าคงตัว จะสามารถหาความสัมพันธ์ต่าง ๆ ได้จากกราฟระหว่างความเร็วกับเวลา ดังนี้

ภาพ : Thananthorn


สำหรับการเคลื่อนที่แนวตรง ความเร่งเป็นตัวแปรหนึ่งที่มีความสำคัญและเกี่ยวข้องกัน แต่นอกจากนี้ยังมีตัวแปรอื่น ๆ ที่เกี่ยวข้องกับการเคลื่อนที่แนวตรงด้วย เช่น
ความเร็วต้น หมายถึง ความเร็วเมื่อวัด ณ จุดเริ่มต้น มีสัญลักษณ์เป็น (u) มีหน่วยเป็น m/s หรือเมตรต่อวินาที
ความเร็วปลาย หมายถึง ความเร็วเมื่อวัด ณ จุดสิ้นสุด มีสัญลักษณ์เป็น (v) มีหน่วยเป็น m/s หรือเมตรต่อวินาที
เวลา มีสัญลักษณ์เป็น (t) มีหน่วยเป็น s หรือวินาที
ระยะกระจัด หมายถึง ระยะที่วัดจากจุดเริ่มต้นไปจนถึงจนสิ้นสุด มีสัญลักษณ์เป็น (s) มีหน่วยเป็น m หรือเมตร

 

จากกราฟแสดงความสัมพันธ์ระหว่างความเร็ว (m/s) กับเวลา (s) ซึ่งเป็นกราฟเส้นตรง เราสามารถหาค่าความเร่งได้จากความชันของกราฟ คือ 

 

เมื่อความชันกราฟหรือ Slope คือ ความเร่ง จะได้

โดย Δt หมายถึง การเปลี่ยนแปลงเวลา ซึ่ง Δt = t1 - t0 นั่นคือ

เมื่อให้ t0 คือ เวลาเริ่มต้น โดยส่วนมากมักจะมีค่าเป็น 0 และให้ t1 คือ เวลาตอนท้าย และกำหนดค่าเป็น t จะได้ว่า

จัดรูปสมการจะได้ หรือ ---------- (1)

 

นอกจากความชันของกราฟแสดงความสัมพันธ์ระหว่างความเร็ว (m/s) กับเวลา (s) จะมีความหมายดังกล่าวแล้ว พื้นที่ใต้กราฟยังหมายถึง ระยะกระจัด (s) ของการเคลื่อนที่ด้วย โดยจากกราฟแสดงความสัมพันธ์ระหว่างความเร็ว (m/s) กับเวลา (s) เราจะเห็นพื้นที่ใต้กราฟเป็นรูปสี่เหลี่ยมคางหมู และสามารถคำนวณหาพื้นที่ได้จากสมการ

 

พื้นที่มีค่าเท่ากับระยะกระจัด ความยาวของด้านคู่ขนานทั้งสองด้านมีค่าเป็นความเร็วต้นและความเร็วปลาย ส่วนระยะระหว่างด้านคู่ขนาน คือ เวลา

เมื่อแทนค่าจะได้ ---------- (2)

 

จากสมการ เมื่อจัดรูปแบบแล้วจะได้

นำสมการ แทนค่าลงใน จะได้

นั่นคือ

จัดรูปสมการจะได้  ---------- (3)

 

และเมื่อแทนค่า สมการที่ (1)   ลงไปในสมการที่ (2) จะได้

เมื่อทำเป็นผลสำเร็จคือ     ---------- (4)

 

สรุปได้ 4 สมการที่เกี่ยวข้องกับการเคลื่อนที่แนวตรงที่นิยมนำไปใช้คือ

---------- (1)

---------- (2)

---------- (3)

---------- (4)

 

ตัวอย่างความเร่งที่เห็นได้ในชีวิตประจำวันของเรานั่นคือ การขึ้นลิฟต์โดยสาร เนื่องจากความเร่งเป็นปริมาณเวกเตอร์ซึ่งมีทั้งขนาดและทิศทางจะส่งผลทำให้คนที่ใช้ลิฟต์โดยสารมักจะเกิดอาการต่าง ๆ ทำให้ยืนหรือทรงตัวได้ไม่ปกติ แบ่งได้ 2 ลักษณะคือ ขณะลิฟต์เคลื่อนขึ้น และขณะที่ลิฟต์เคลื่อนลง

 

ขณะที่ลิฟต์เคลื่อนที่ขึ้น

เมื่อลิฟต์เริ่มเคลื่อนที่ขึ้น ลิฟต์จะมีความเร่งในทิศชี้ขึ้น สวนทางกับความเร่งเนื่องจากแรงโน้มถ่วงของโลก จึงทำให้ผู้โดยสารภายในลิฟต์รู้สึกว่าตัวหนักขึ้น เพราะแรงที่ลิฟต์กระทำ ตามกฎข้อที่ 2 ของนิวตัน ดังสมการ ∑F = ma

เมื่อมีแรงที่กระทำ 2 แรงคือ แรงที่ลิฟต์ดึงขึ้น (F) และน้ำหนักของคน (mg)
แทนค่าจะได้      F – mg = ma
ดังนั้น              F = m(g + a) จึงทำให้มีแรงมากขึ้นกว่าน้ำหนักเดิม

ภาพ : Thananthorn/Pixabay

 

เมื่อลิฟต์เคลื่อนที่ขึ้นจนมีความเร็วคงที่ ลิฟต์จะมีความเร่งเป็น 0  ซึ่งทำให้ผู้โดยสารภายในลิฟต์รับแรงปกติเหมือนที่ยืนบนพื้นดิน ตามกฎข้อที่ 1 ของนิวตัน คือ  ∑F = 0 จึงไม่รู้สึกถึงแรงกระทำ หรือความเร่งใด ๆ

ภาพ : Thananthorn/Pixabay

 

เมื่อลิฟต์เคลื่อนที่ขึ้นไปจนสุดและกำลังจะหยุด ลิฟต์จะมีความเร่งในทิศชี้ลง เป็นทิศเดียวกับความเร่งเนื่องจากแรงโน้มถ่วงของโลก จึงทำให้ผู้โดยสารรู้สึกว่าน้ำหนักตัวลดลง เพราะแรงที่ลิฟต์กระทำ ตามกฎข้อที่ 2 ของนิวตัน ดังสมการ ∑F = ma
แทนค่าจะได้      F – mg = m(-a)
ดังนั้น              F = m(g - a) จึงทำให้มีแรงน้อยลงกว่าน้ำหนักเดิม

ภาพ : Thananthorn/Pixabay

 

ขณะที่ลิฟต์เคลื่อนลง

เมื่อลิฟต์เริ่มเคลื่อนที่ลง ลิฟต์จะมีความเร่งในทิศชี้ลง ทิศเดียวกับความเร่งเนื่องจากแรงโน้มถ่วงของโลก จึงทำให้ผู้โดยสารภายในลิฟต์รู้สึกว่าตัวเบาลง เพราะแรงที่ลิฟต์กระทำ ตามกฎข้อที่ 2 ของนิวตัน ดังสมการ ∑F = ma
เมื่อมีแรงที่กระทำ 2 แรงคือ แรงที่ลิฟต์ดึงลง (F) และน้ำหนักของคน (mg)
แทนค่าจะได้      F – mg = m(-a)
ดังนั้น              F = m(g - a) จึงทำให้มีแรงน้อยลงกว่าน้ำหนักเดิม

ภาพ : Thananthorn/Pixabay

 

เมื่อลิฟต์เคลื่อนที่ลงจนมีความเร็วคงที่ ลิฟต์จะมีความเร่งเป็น 0  ซึ่งทำให้ผู้โดยสารภายในลิฟต์รับแรงปกติเหมือนที่ยืนบนพื้นดิน ตามกฎข้อที่ 1 ของนิวตัน จึงไม่รู้สึกถึงแรงกระทำ หรือความเร่งใด ๆ

ภาพ : Thananthorn/Pixabay

 

เมื่อลิฟต์เคลื่อนที่ลงและกำลังจะหยุด ลิฟต์จะมีความเร่งในทิศชี้ขึ้น สวนทางกับความเร่งเนื่องจากแรงโน้มถ่วงของโลก จึงทำให้ผู้โดยสารภายในลิฟต์รู้สึกว่าตัวหนักขึ้น เพราะแรงที่ลิฟต์กระทำ ตามกฎข้อที่ 2 ของนิวตัน ดังสมการ ∑F = ma
เมื่อมีแรงที่กระทำ 2 แรงคือ แรงที่ลิฟต์ดึงขึ้น (F) และน้ำหนักของคน (mg)
แทนค่าจะได้      F – mg = ma
ดังนั้น              F = m(g + a) จึงทำให้มีแรงมากขึ้นกว่าน้ำหนักเดิม

ภาพ : Thananthorn/Pixabay

 

 

เว็บไซต์ทรูปลูกปัญญาดอทคอมเป็นเพียงผู้ให้บริการพื้นที่เผยแพร่ความรู้เพื่อประโยชน์ของสังคม ข้อความและรูปภาพที่ปรากฏในบทความเป็นการเผยแพร่โดยผู้ใช้งาน หากพบเห็นข้อความและรูปภาพที่ไม่เหมาะสมหรือละเมิดลิขสิทธิ์ กรุณาแจ้งผู้ดูแลระบบเพื่อดำเนินการต่อไป
Tags
  • Posted By
  • Thananthorn
  • 0 Followers
  • Follow