ทฤษฎีบทสุดท้ายของ ปีแยร์ เดอ แฟร์มา
เกล้าเทพ | 17 ส.ค. 54
6.7K views

ก่อนอื่น ต้องรู้ ประวัติก่อน

ปีแยร์ เดอ แฟร์มา (ฝรั่งเศส: Pierre de Fermat; 17 สิงหาคม 1601 หรือ 1607/8 – 12 มกราคม 1665) เป็นชาวฝรั่งเศส ผู้เป็นนักกฎหมายประจำสภานิติบัญญัติประจำแคว้นตูลูซ และเป็นนักคณิตศาสตร์มือสมัครเล่นที่ได้ชื่อเสียงมาจากริเริ่มพัฒนาการหลายแขนงอันนำไปสู่แคลคูลัสกณิกนันต์ (infinitesimal calculus) รวมถึง การกะความเท่าเทียม (adequality) โดยเฉพาะอย่างยิ่ง เป็นที่นิยมกันว่า เขาค้นพบวิธีดั้งเดิมสำหรับคำนวณเส้นโค้งที่กว้างที่สุดและที่เล็กที่สุด อันเทียบได้กับ เส้นโค้งลักษณะเฉพาะ(characteristic curv) ใน สมการเชิงอนุพันธ์ (differential equation) ในวิชาการปัจจุบัน นอกจากนี้ เขายังเป็นที่ร่ำลือในเรื่องงานค้นคว้าเกี่ยวกับทฤษฎีตัวเลข (number theory) ด้วย

 

ทฤษฎีบทสุดท้ายของแฟร์มาต์ (อังกฤษ: Fermat's last theorem) เป็นหนึ่งในทฤษฎีบทที่โด่งดังในประวัติศาสตร์ของคณิตศาสตร์ ซึ่งกล่าวว่า:

Cquote1.svg

 

ไม่มีจำนวนเต็มบวก xy, และ z ที่ทำให้ x^n   y^n = z^n ; เมื่อ n เป็นจำนวนเต็มที่มากกว่า 2

Cquote2.svg

ปิแยร์ เดอ แฟร์มาต์ นักคณิตศาสตร์ในคริสต์ศตวรรษที่ 17 ได้เขียนทฤษฎีบทนี้ลงในหน้ากระดาษหนังสือ Arithmetica ของไดโอแฟนตัส ฉบับแปลเป็นภาษาละตินโดย Claude-Gaspar Bachet เขาเขียนว่า "ฉันมีบทพิสูจน์ที่น่าอัศจรรย์สำหรับบทสรุปนี้ แต่พื้นที่กระดาษเหลือน้อยเกินไปที่จะอธิบายได้" (เขียนเป็นภาษาละตินว่า "Cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.") อย่างไรก็ตาม ตลอดระยะเวลา 357 ปี ไม่มีใครสามารถพิสูจน์ได้ถูกต้องเลย

ข้อความนี้มีความสำคัญมาก เพราะว่าข้อความอื่นๆ ที่แฟร์มาต์เขียนนั้น ได้รับการพิสูจน์หมดแล้ว ไม่ว่าจะพิสูจน์ด้วยตัวเขาเอง หรือว่ามีคนให้บทพิสูจน์ในภายหลัง ทฤษฎีบทนี้ไม่ได้เป็นข้อความคาดการณ์สุดท้ายที่แฟร์มาต์เขียน แต่เป็น ข้อสุดท้ายที่จะต้องพิสูจน์ นักคณิตศาสตร์ได้พยายามพิสูจน์หรือไม่ก็หักล้างทฤษฎีบทนี้มาโดยตลอด และต้องพบกับความล้มเหลวทุกครั้งไป ทำให้ทฤษฎีนี้เป็นทฤษฎีที่สร้างบทพิสูจน์ที่ผิดๆ มากที่สุดในวงการคณิตศาสตร์ก็ว่าได้ อาจเป็นเพราะทฤษฎีบทนี้ดูแล้วไม่มีอะไรซับซ้อนนั่นเอง

ไฟล์:Diophantus-II-8.jpg

บริบททางคณิตศาสตร์
ทฤษฎีบทสุดท้ายของแฟร์มาต์ เป็นรูปแบบทั่วไปของสมการไดโอแฟนไทน์ a2  b2 = c2 (สมการที่ตัวแปรเป็นจำนวนเต็มเท่านั้น) ชาวจีน ชาวกรีก และชาวบาบิโลเนียนได้ค้นพบคำตอบของสมการนี้หลายคำตอบเช่น (3, 4, 5) (32  42 = 52) หรือ (5, 12, 13) เป็นต้น คำตอบเหล่านี้เรียกว่า สามสิ่งอันดับพีทาโกรัส (Pythagorean triples) และมีอยู่จำนวนไม่จำกัด ทฤษฎีบทสุดท้ายของแฟร์มาต์ กล่าวว่า สมการนี้จะไม่มีคำตอบเมื่อเลขยกกำลังมากกว่า 2

ทฤษฎีนี้ไม่ค่อยถูกนำไปใช้ประโยชน์มากนัก (ไม่ได้ถูกนำไปใช้พิสูจน์ทฤษฎีอื่น) แต่มันก็เชื่อมโยงกับคณิตศาสตร์สาขาอื่น ๆ หลายสาขา และมันก็ไม่เป็นความพยายามที่ไร้สาระเสียทีเดียว การพยายามพิสูจน์ทฤษฎีนี้ก่อให้เกิดคณิตศาสตร์สาขาต่าง ๆ ที่สำคัญอีกมากมาย

บทพิสูจน์
แอนดรูว์ ไวลส์ (Andrew Wiles) นักคณิตศาสตร์ชาวอังกฤษจากมหาวิทยาลัยแคมบริดจ์ ได้พิสูจน์ทฤษฎีบทสุดท้ายของแฟร์มาต์ โดยใช้เครื่องมือในการพิสูจน์คือ เรขาคณิตเชิงพีชคณิต (ในเรื่องเส้นโค้งเชิงวงรี และรูปแบบมอดุลาร์) , ทฤษฎีกาโลอิส และ พีชคณิต Hecke โดยได้รับความช่วยเหลือจาก ริชาร์ด เทย์เลอร์ (Richard Taylor) ซึ่งเป็นลูกศิษย์ของเขาเอง บทพิสูจน์ของเขาได้ตีพิมพ์ลงในวารสาร Annals of Mathematics เมื่อค.ศ. 1995

ไวลส์ใช้เวลา 7 ปีในการพิสูจน์ทฤษฎีบทสุดท้ายของแฟร์มาต์ เขาทำการพิสูจน์โดยลำพัง และเก็บเรื่องนี้เป็นความลับมาโดยตลอด (ยกเว้น ตอนตรวจทานครั้งสุดท้าย ซึ่งเขาได้ขอความช่วยเหลือจากเพื่อนของเขาที่ชื่อNick Katz) ในวันที่ 21-23 มิถุนายน ค.ศ. 1993 เขาก็ได้แสดงบทพิสูจน์ของเขาที่มหาวิทยาลัยเคมบริดจ์ ผู้เข้าฟังการบรรยายครั้งนั้นต่างก็ประหลาดใจไปกับวิธีการต่างๆ ในบทพิสูจน์ของเขา ต่อมา เขาก็พบข้อผิดพลาดในบทพิสูจน์ แต่ไวลส์และเทย์เลอร์ยังไม่ละทิ้งความพยายาม เขาใช้เวลาอยู่หนึ่งปีในการแก้ไข และในเดือนกันยายน ค.ศ. 1994 เขาก็ได้เสนอบทพิสูจน์ใหม่อีกครั้งโดยใช้วิธีการที่แตกต่างไปจากเดิม เรื่องการพิสูจน์นี้จึงเป็นเรื่องที่น่าจดจำเลยทีเดียว

นี่คือข้อความที่แฟร์มาต์เขียนไว้บนหน้ากระดาษหนังสือ Arithmetica:

Cubum autem in duos cubos, aut quadrato-quadratum in duos quadrato-quadratos, et generaliter nullam in infinitum ultra quadratum potestatem in duos eiusdem nominis fas est dividere cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exigitas non caperet.

(มันเป็นไปไม่ได้ที่จะแบ่งจำนวนยกกำลัง 3 ออกเป็นจำนวนยกกำลัง 3 สองจำนวน หรือแบ่งจำนวนยกกำลัง 4 ออกเป็นจำนวนยกกำลัง 4 สองจำนวน หรือกล่าวโดยทั่วไปว่า ไม่สามารถแบ่งจำนวนที่ยกกำลังมากกว่า 2 ออกเป็นจำนวนที่ยกกำลังเท่าเดิมสองจำนวนได้ ฉันมีบทพิสูจน์ที่น่าอัศจรรย์สำหรับบทสรุปนี้ แต่ขอบกระดาษนี้มีพื้นที่น้อยเกินกว่าที่จะเขียนบรรยายได้)

หลายคนต่างสงสัยใน "บทพิสูจน์ที่น่าอัศจรรย์" ของแฟร์มาต์ว่ามันมีอยู่จริงหรือไม่ บทพิสูจน์ของไวลส์นั้น หนาประมาณ 200 หน้า และยากเกินกว่าที่นักคณิตศาสตร์ในปัจจุบันจะเข้าใจ ในขณะที่บทพิสูจน์ของแฟร์มาต์น่าจะใช้วิธีที่พื้นฐานมากกว่านี้ เนื่องจากข้อจำกัดด้านความรู้ทางด้านคณิตศาสตร์ในสมัยนั้น ซึ่งก็เป็นเหตุให้นักคณิตศาสตร์และนักประวัติศาสตร์ที่เชี่ยวชาญด้านวิทยาศาสตร์ส่วนใหญ่ก็ยังไม่ค่อยเชื่อว่าแฟร์มาต์จะมีบทพิสูจน์ที่ถูกต้องสำหรับเลขยกกำลัง n ทุกจำนวนจริงๆ

แอนดรูส์ ไวลส์ เองก็เคยให้สัมภาษณ์ไว้ว่าเขาไม่เชื่อว่าแฟร์มาต์จะมีบทพิสูจน์ที่ถูกต้องจริง

I don’t believe Fermat had a proof. I think he fooled himself into thinking he had a proof. But what has made this problem special for amateurs is that there’s a tiny possibility that there does exist an elegant seventeenth century proof.

(ผมไม่เชื่อว่าแฟร์มาต์จะมีบทพิสูจน์ที่ถูกต้องจริง ผมคิดว่าเขาหลอกให้ตัวเองเชื่อว่าเขามีบทพิสูจน์นั้น แต่สิ่งที่ทำให้โจทย์ข้อนี้เป็นเรื่องพิเศษสำหรับนักคณิตศาสตร์สมัครเล่นก็คือ มันทำให้เกิดความหวังว่า ยังมีโอกาสที่จะค้นพบบทพิสูจน์อันสวยงามได้โดยใช้เพียงความรู้คณิตศาสตร์ในศตวรรษที่ 17)

อย่างไรก็ตามความผิดพลาดเป็นเรื่องธรรมดาของมนุษย์ ดังเคยมีตัวอย่างมากมายของนักคณิตศาสตร์หรือนักวิทยาศาสตร์ชื่อดังที่ได้มีความเชื่อที่ผิดพลาดหลายท่าน ดังเช่นไอน์สไตน์ครั้งหนึ่งก็ยังให้ข้อสรุปที่ผิดพลาดเกี่ยวกับการขยายตัวของจักรวาล เพราะฉะนั้นจึงไม่น่าจะแปลกใจอะไรถ้าแฟร์มาต์จะเข้าใจผิดว่าเขามีบทพิสูจน์ที่ถูกต้องจริง.

แหล่งที่มาของข้อมูล https://th.wikipedia.org/wiki/ทฤษฎีบทสุดท้ายของแฟร์มา

คะแนนคอนเทนต์ 0.0
ผู้โหวตทั้งหมด 0
Share this
เนื้อหาที่เกี่ยวข้อง

คณิตศาสตร์
คณิตศาสตร์ ม. ต้น สถิติ
2.6K views
คณิตศาสตร์
คณิตศาสตร์ ม. ต้น สถิติ
2.3K views
ข้อสอบที่เกี่ยวข้อง

วิชาคณิตศาสตร์ม.3 ชุดที่5
21.4K views
วิชาคณิตศาสตร์ม.3 ชุดที่6
33.5K views
ความน่าจะเป็น
76.4K views
กราฟ
11.5K views