จำนวนเฉพาะ
24couple_thailand,world challenge | 27 มิ.ย. 62
9.4K views

ในคณิตศาสตร์ จำนวนเฉพาะ คือ จำนวนธรรมชาติที่มีตัวหารที่เป็นบวกอยู่ 2 ตัว คือ 1 กับตัวมันเอง ตรงข้ามกับจำนวนประกอบ

ลำดับของจำนวนเฉพาะเริ่มต้นด้วย

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113...
(ลำดับ A000040 ใน OEIS)

สำหรับจำนวนเฉพาะ 500 จำนวนแรก สำหรับเลข 1 ไม่ถือว่าเป็นจำนวนเฉพาะตามนิยาม

เซตของจำนวนเฉพาะทั้งหมดมักเขียนแทนด้วย mathbb P เนื่องจาก 2 เป็นจำนวนเฉพาะตัวเดียวที่เป็นเลขคู่ ดังนั้นคำว่า จำนวนเฉพาะคี่ จะถูกใช้เพื่อหมายถึงจำนวนเฉพาะทั้งหมดที่ไม่ใช่ 2

การแทนจำนวนธรรมชาติ ด้วยผลคูณของจำนวนเฉพาะ

ทฤษฎีบทมูลฐานของเลขคณิตกล่าวว่า จำนวนเต็มบวกทุกตัวสามาถเขียนได้ในรูปผลคูณของจำนวนเฉพาะ และเขียนได้แบบเดียวเท่านั้น จำนวนเฉพาะเป็นเหมือน "บล็อกก่อสร้าง"ของจำนวนธรรมชาติ ตัวอย่างเช่น

23244 = 2^2 times 3 times 13 times 149

ไม่ว่าเราจะแยกตัวประกอบของ 23244 แบบใดโดยไม่คำนึงถึงลำดับของตัวประกอบแล้ว มันก็จะไม่ต่างไปจากนี้

มีจำนวนเฉพาะอยู่จำนวนเท่าไร?

มีจำนวนเฉพาะอยู่เป็นจำนวนมากโดยหาค่ามิได้ บทพิสูจน์ที่เก่าแก่ที่สุดสำหรับประโยคนี้ คิดขึ้นโดยนักคณิตศาสตร์ชาวกรีกชื่อ ยุคลิด ในหนังสือ Elements (Book IX, Proposition 20) ยุคลิดกล่าวในหนังสือของเขาว่า "มีจำนวนเฉพาะ มากกว่าจำนวนเฉพาะ[จำนวนจำกัด]ที่กำหนดให้" บทพิสูจน์ของเขาสามารถสรุปย่อๆได้ว่า:

ให้ดูจำนวนเฉพาะมีจำนวนจำกัด ซึ่งเรากำหนดว่ามันเป็นจำนวนเฉพาะที่มีอยู่ทั้งหมด คูณจำนวนทั้งหมดเข้าด้วยกันและ บวก 1 ผลลัพธ์ที่ได้จะไม่สามารถหารด้วยจำนวนเฉพาะใดๆใสสนเซตได้ เพราะว่าไม่ว่าจะหารด้วยตัวใดก็จะเหลือเศษ 1 ดังนั้น มันจะต้องเป็นจำนวนเฉพาะ หรืออาจจะมีจำนวนเฉพาะที่หารมันลงตัวแต่ไม่ได้อยู่ในเซตจำกัดนี้ ดังนั้น เซตนี้ไม่ได้มีจำนวนเฉพาะทั้งหมด
 
การค้นหาจำนวนเฉพาะ

ตะแกรงเอราทอสเทนีส และ ตะแกรงของ Atkin เป็นวิธีที่ใช้สร้างรายการจำนวนเฉพาะทั้งหมดตามจำนวนที่กำหนดอย่างรวดเร็ว

ในทางปฏิบัติ เราต้องการตรวจสอบว่าเลขที่กำหนดให้ว่าเป็นจำนวนเฉพาะหรือไม่ มากกว่าจะสร้างรายการจำนวนเฉพาะทั้งหมดขึ้นมา ซึ่งวิธีที่ทดสอบ จะให้คำตอบด้วยความน่าจะเป็น เราสามารถตรวจสอบเลขที่มีขนาดใหญ่ (มี 1 พันหลักขึ้นไป) ว่าเป็นจำนวนเฉพาะหรือไม่ได้อย่างรวดเร็ว โดยใช้การทดสอบความเป็นจำนวนเฉพาะด้วยความน่าจะเป็น (probabilistic primality tests) ซึ่งวิธีนี้ จะต้องทำการสุ่มตัวเลขขึ้นมาตัวหนึ่ง เรียกว่า "พยาน" (witness) และใช้สูตรที่เกี่ยวข้องกับพยาน และจำนวนเฉพาะ N ทำการทดสอบ หลังจากที่ทดสอบไปหลายรอบ เราจะตอบได้ว่า N เป็น"จำนวนประกอบอย่างแน่นอน" หรือ N "อาจเป็นจำนวนเฉพาะ" วิธีทดสอบไม่สามารถให้คำตอบได้ว่าเป็นจำนวนเฉพาะอย่างแน่นอนหรือไม่ การทดสอบบางครั้ง เมื่อใส่จำนวนประกอบลงไป ก็ให้คำตอบว่า"อาจเป็นจำนวนเฉพาะ"เสมอ ไม่ว่าจะเลือกพยานตัวใดก็ตาม จำนวนเหล่านี้เรียกว่า จำนวนเฉพาะเทียม (pseudoprimes) สำหรับการทดสอบ

สมบัติบางประการของจำนวนเฉพาะ

  • ถ้า p เป็นจำนวนเฉพาะ และ p หาร ab ลงตัวแล้ว p หาร a ลงตัว หรือ p หาร b ลงตัว ประพจน์นี้พิสูจน์โดยยุคลิด และมีชื่อเรียกว่า บทตั้งของยุคลิด ใช้ในการพิสูจน์เรื่องการแยกตัวประกอบได้อย่างเดียว
  • ริง (ดูที่เลขคณิตมอดุลาร์) Z/nZ เป็นฟีลด์ ก็ต่อเมื่อ n เป็นจำนวนเฉพาะ
  • ถ้า p เป็นจำนวนเฉพาะ และ a เป็นจำนวนเต็มใดๆแล้ว ap − a หารด้วย p ลงตัว (ทฤษฎีบทน้อยของแฟร์มาต์)
  • จำนวนเต็ม p > 1 เป็นจำนวนเฉพาะ ก็ต่อเมื่อ (p − 1) !   1 หารด้วย p ลงตัว (ทฤษฎีบทของวิลสัน). บทกลับ, จำนวนเต็ม n > 4 เป็นจำนวนประกอบ ก็ต่อเมื่อ (n − 1) ! หารด้วย n ลงตัว
  • ถ้า n เป็นจำนวนเต็มบวกแล้ว จะมีจำนวนเฉพาะ p ที่ n < p < 2n (สัจพจน์ของเบอร์แทรนด์)
  • สำหรับจำนวนเฉพาะ p > 2 จะมีจำนวนธรรมชาติ n ที่ทำให้ p = 4n ± 1
  • สำหรับจำนวนเฉพาะ p > 3 จะมีจำนวนธรรมชาติ n ที่ทำให้ p = 6n ± 1

การประยุกต์

จำนวนเฉพาะที่มีขนาดใหญ่มาก (ใหญ่กว่า 10100) นำไปใช้ประโยชน์ในอัลกอริทึมเข้ารหัสลับแบบกุญแจสาธารณะ นอกจากนี้ยังใช้ในตารางแฮช (hash tables) และเครื่องสุ่มเลขเทียม

 

ช่องว่างระหว่างจำนวนเฉพาะ
 

ให้ pn คือจำนวนเฉพาะตัวที่ n (นั่นคือ p1 = 2, p2 = 3, ...) ช่องว่าง gn ระหว่างจำนวนเฉพาะ pn กับ pn 1 คือผลต่างของจำนวนเฉพาะสองจำนวนดังกล่าว นั่นคือ

gn = pn 1pn

เราจะได้ g1 = 3 − 2 = 1, g2 = 5 − 3 = 2, g3 = 7 − 5 = 2, และ g4 = 11 − 7 = 4 ลำดับ gn ของช่องว่างระหว่างจำนวนเฉพาะ เป็นลำดับที่มีการศึกษากันอย่างมาก

สำหรับจำนวนนับ N ใดๆ ที่มากกว่า 1

N! 2, N! 3, ..., N! N

เป็นลำดับของจำนวนประกอบที่ติดกัน N − 1 ตัว ดังนั้น เราสามารถสร้างช่องว่างระหว่างจำนวนเฉพาะให้มีขนาดใหญ่เท่าใดก็ได้ นั่นคือ สำหรับจำนวน N ใดๆ จะมีจำนวนเต็ม n ซึ่ง gn > N (เลือก n ที่ทำให้ pn มีค่ามากที่สุด และน้อยกว่า N! 2)

ช่องว่างระหว่างจำนวนเฉพาะใดๆ มีค่าน้อยมากเมื่อเทียบกับจำนวนเฉพาะ ดังนั้น gn/pn จึงมีค่าเข้าใกล้ 0 เมื่อ n เข้าใกล้อนันต์ ข้อความคาดการณ์จำนวนเฉพาะคู่แฝดกล่าวว่า มี n ที่ทำให้ gn = 2 อยู่ไม่จำกัด

จำนวนเฉพาะที่มากที่สุดเท่าที่รู้

 

จำนวนเฉพาะที่มากที่สุดเท่าที่รู้ตั้งแต่ ธันวาคม พ.ศ. 2549 คือ 230402457 − 1 (ตัวเลขนี้มีความยาว 9,152,052 หลัก) มันเป็นจำนวนเฉพาะแมร์กแซนตัวที่ 43 M30402457 ถูกค้นพบเมื่อวันที่ 15 ธันวาคม พ.ศ. 2549 โดยดร.สตีเฟน บูนและ ดร.เคอร์ติส คูเปอร์ สมาชิกของ GIMPS

จำนวนเฉพาะที่มากที่สุดเท่าที่รู้รองลงมากันยายน พ.ศ. 2548 คือ 225964951 − 1 (ตัวเลขนี้มีความยาว 7,816,230 หลัก) มันเป็นจำนวนเฉพาะแมร์กแซนตัวที่ 42 M25964951 ถูกค้นพบเมื่อวันที่ 18 กุมภาพันธ์ พ.ศ. 2548 โดยMartin Nowak สมาชิกที่มีบทบาทของ GIMPS

จำนวนเฉพาะที่มากที่สุดเท่าที่รู้รองลงมา คือ 224036583 − 1 (ตัวเลขนี้มีความยาว 7,235,733 หลัก) มันเป็นจำนวนเฉพาะแมร์กแซนตัวที่ 41 M24036583 ถูกค้นพบเมื่อวันที่ 15 พฤษภาคม พ.ศ. 2547 โดยJosh Findley (สมาชิกของ GIMPS) และประกาศในปลายเดือนพฤษภาคม พ.ศ. 2547

จำนวนเฉพาะที่มากเป็นอันดับสามเท่าที่รู้ คือ 220996011 − 1 (ตัวเลขนี้มีความยาว 6,320,430 หลัก) มันเป็นจำนวนเฉพาะแมร์กแซนตัวที่ 40 M20996011 ถูกค้นพบเมื่อวันที่ 17 พฤศจิกายน พ.ศ. 2546 โดยMichael Shafer (และ GIMPS) และประกาศในต้นเดือนธันวาคม พ.ศ. 2546


แหล่งที่มาของข้อมูล https://th.wikipedia.org/wiki/%E0%B8%88%E0%B8%B3%E0%B8%99%E0%B8%A7%E0%B8%99%E0%B9%80%E0%B8%89%E0%B8%9E%E0%B8%B2%E0%B8%B0 

คะแนนคอนเทนต์ 0.0
ผู้โหวตทั้งหมด 0
Share this
เนื้อหาที่เกี่ยวข้อง

คณิตศาสตร์
ทิศและแผนผัง
188.1K views
คณิตศาสตร์
หลัก ค่าประจำหลัก ค่าของเลขโดด และการเขียนในรูปกระจาย
271.1K views
ข้อสอบที่เกี่ยวข้อง

เรื่อง แบบรูปและความสัมพันธ์ ป.4
18.4K views
เรื่อง เรขาคณิต ป.4
53.8K views
เรื่อง การคูณการหาร จำนวน ป.4
18.3K views
เรื่อง ทศนิยม ป.4
46.2K views